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A Lattice Boltzmann Equation for Diffusion 

D i e t e r  W o l f - G l a d r o w  1 

Received September 30, 1994 

The formulation of lattice gas automata (LGA) for given partial differential 
equations is not straightforward and still requires "some sort of magic." Lattice 
Boltzmann equation (LBE) models are much more flexible than LGA because 
of the freedom in choosing equilibrium distributions with free parameters which 
can be set after a multiscale expansion according to certain requirements. Here 
a LBE is presented for diffusion in an arbitrary number of dimensions. The 
model is probably the simplest LBE which can be formulated. It is shown that 
the resulting algorithm with relaxation parameter co= 1 is identical to an 
explicit finite-difference (EFD) formulation at its stability limit. Underrelaxation 
(0 < co < 1 ) allows stable integration beyond the stability limit of EFD. The time 
step of the explicit LBE integration is limited by accuracy and not by stability 
requirements. 

KEY WORDS: Diffusion; finite differences; lattice Boltzmann equation; 
underrelaxation; numerical stability; explicit schemes. 

1. I N T R O D U C T I O N  

The  last 10 years  have  seen a r ap id  d e v e l o p m e n t  o f  new numer i ca l  m e t h o d s  

for the so lu t ion  of  par t ia l  differential  equa t ions ,  especial ly N a v i e r - S t o k e s  
equa t ions .  After  the p r o p o s a l  of  the first successful lat t ice gas a u t o m a t a  

( L G A )  for h y d r o d y n a m i c s  in two  d imens ions  by Fr i sch  et aL, ~8) several  new 

L G A  mode l s  have  been  p resen ted  each  year  and  app l ied  to va r ious  p rob lems ,  
a m o n g  t h e m  h y d r o d y n a m i c s  in three d imens ions ,  17' 171 flow t h r o u g h  p o r o u s  
media ,  12~ immisc ib le  fluids, 121) several  fluids and  externa l  forces, 113~ 
m a g n e t o h y d r o d y n a m i c s ,  t3"16'41 and  d i f fus ion- reac t ion  equa t ions ,  (6'~2) to 

n a m e  on ly  a few. 
Lat t ice  B o l t z m a n n  equa t ions  ( L B E )  have  been  used as an  ana ly t ica l  

tool  in the theory  o f  L G A  (see, for example ,  F r i sch  et al.18)). In  1988, 
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McNamara  and Zanetti ('s) proposed LBE as a numerical scheme. The first 
LBE models were still plagued by similar problems to LGA (breaking of 
Galilei invariance, pressure depending explicitly on flow speed) due to 
Fermi-Dirac distribution functions and certain underlying grids. It took 
some years to develop a generation of LBE based on different distribution 
functions, multispeed grids, and tunable parameters (BGK models, see 
below; see, for example, Martinez et al. (14) and references therein). 

The creation of LGA for certain partial differential equations still 
seems to require "some sort of magic. ''(22) Here a simple LBE model for 
diffusion is presented and it is shown how straightforward it is to derive 
such a model. In addition, the resulting algorithms are compared with an 
explicit finite-difference (EFD) scheme. 

2. FINITE-DIFFERENCE A P P R O X I M A T I O N  

An explicit finite-difference scheme for the diffusion equation 

a T  __  = KVET 
0t 

( T is the concentration of a tracer, K is the diffusion coefficient, and V 2 is 
the Laplace operator in D dimensions in Cartesian coordinates) results 
from forward approximation in time and central differences in space, 

K A t  T(,, + l ) t TOO (,,) 
k,. k2...., kn = (Ax)2 ~ --k, + ,. k>..., ko + Tk ,  - I. kz...., ko 

T(,,) + "'" + k,.k:.....ko+, + T(~';Ik,.,....ko--,) 

K A t  "~ T(") 
+ 1 -- 2 D  (-~x)2 j --k,, k:...., ko 

where equidistant and equal spacing in all dimensions has been assumed. 
The scheme is stable for 

1 ( ~ x )  2 
O < A t  <~-2D K 

(see, for example, Ames(l)). At the upper stability limit the scheme becomes 
especially simple, 

(.) T =(T','I'+ k l ,  k2,..., kD l, k2,..., kD 

+ T(,'i'k2,....ko+, + T~i)k , . , . . . ,ko_l) / (2D) 
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that  is, T at the new time level is given by the mean over all neighbor 
values at the previous time level. 

3. THE LATTICE B O L T Z M A N N  E Q U A T I O N  FOR D I F F U S I O N  

"... it is well known that 90 ~ rotational invariance is sufficient to yield 
full isotropy for diffusive phenomena.  ''~22) 

According to Toffoli and Margulos, (z2) it is sufficient to use a 
square or  a cubic lattice in two or three dimensions, respectively. The 
following model is applicable in an arbitrary number  of  dimensions. The 
grid velocities (vectors connecting neighboring grid points) are defined 
by 

c2 ,_l  = (0, 0 ..... 0 , 1 , 0  ..... 0), c2,, = (0, 0 ..... 0, - 1 , 0  ..... 0), n = 1 , 2  ..... D 

where D is the dimension. 
In general, the equilibrium distributions T (~ depend on the conserved 

quantities (here only T), a number  of  parameters yk(k = 0, 1 ..... N), and the 
direction (index m). Here, grids with only one speed are considered and the 
equilibrium distribution functions Tt, ~ do not  depend on m. T is given as 
the sum over the distribution functions T,,, 

T(x, t)= Y, :r,.(x, t)= Z (o) T,.  (x, t) (1) 
m r t l  

where the summation runs over all directions (m = 1, 2 ..... M = 2D). 
The diffusion equation is a linear differential equation. Hence it is 

reasonable to use a linear ansatz for T (~ 
- -  m , 

T ( ~  Yl T (2) 
m 

Inserting (2) into (1) yields 

T T ( O ) = _ _  
m 2D 

that  is, all free parameters are already fixed by the definition of the tracer 
concentration. The diffusion coefficient x will result from multiscale expan- 
sion as described below. 
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3.1. Multiscale Expansion 

The LBE model is defined by the grid, the equilibrium distribution 
TI, ~ and the kinetic equation 

T . , ( x + c  .... t +  1 ) = ( 1 - c o )  T,,,(x, t)+coTl,~ t) (3) 

which states that the distribution at the new time level (t + 1 ) at the 
neighboring site (x + c.,) is a weighted sum of the distribution T.,(x, t) and 
the equilibrium distribution ~o) T,,, (x, t). Models with parameter co go under 
various names: enhanced collision, I ~  BGK (after Bhatnagar, Gross, and 
Krookl21), STRA (single-time relaxation approximationlS~), or SOR 
(successive overrelaxationlJ8)). The LBE model is stable for 0 < c o < 2 .  
Now the macroscopic equations will be derived by a multiscale analysis 
(compare Frisch et al. <gJ for an analogous procedure for LGA). The dis- 
tribution functions are expanded up to linear terms in the small expansion 
parameter e, 

- -  _ " r ' (  1 ) ...~ ( ~ ( e 2 )  Tt,, = T~  I -t- ~ , , ,  

From the kinetic equation (3) one can calculate an approximation of T(I) it! , 

T . , ( x + c  .... t +  1)= T,,,(x, t ) + O . . c , . . T . , + O , T , . + ~ O ( e  2) 

= ( 1 - co) T.,(x, t) + coT.,t~ t) 
{01 t l l  = T,,, + eT,,, + 6 q e - )  

_ . ~ , ~ _  _ _ I  O~. c,,,~T,, _ l _o ,T , , ,+r  
~ l m  - -  ( D  " CO 

Diffusion is a slow process on large spatial scales, which suggests the 
following scaling (same as for the derivation of the Navier-Stokes equa- 
tions in Frisch et al/~9~): 

0 t ~ e2Ot2 

The components of the grid velocities obey the following equations: 

c,,, = 0 
m 

2 c,,,~ c,,,a = 2~. a 
tt1 
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and therefore 

)"~ e Tt~ ~ D ~  _,, _ . ,  = e , .  = 0 
m 

Inserting the expansion and the scalings into the conservation relation for 
tracer concentration, one gets up to second order in e 

0 = ~ [ T , , , ( x + e  .... t + l ) - T , , , ( x , t ) ]  
m 

I 2 10)  = ~. [ T,,,(x, t) + e-O,2 T,.  + eO.,.,c,,= r,,, + ~ t  O.r  fl T , ,  
nl 

~ 0 1 T  

- -  T , . ( x ,  t) + C ( e 3 ) ]  

and 

~'eO~,.. c,= T,,, = eO ,.,. ~/.~'~ %.=~ .t,,,m(0) + 2 8-0 X.l= C,,,= T,, , .  -t-- 
D1 I t l  t t l  

=0 

1 
= - -  - -  Z e20- . ' , , ,Ox l~C, .=C.41T ' ,  ~  + Cc)(e3) 

~0 IPI 

1 1 
-- e2~=/]Ox.i O~t.T+ [O(e 3) 

m D ~  
~ V 2 T  

1 1 , 2 ~ d-O.~,~O.,.,,c,,,~c,,,prl,~ e-6~eOx, Ox,,r 
m 

and finally 

with 

OT 
- - =  N V 2 T  
Ot 

K= D 

3 . 2 .  T h e  S p e c i a l  C a s e  to = 1 

For co = 1 the kinetic equation (3) reduces to 

T,,,(x + c.,, t +  1) (o) = T,,, (x, t) 
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and the diffusion coefficient is h" = 1/(2D). This LBE model is identical to 
the finite-difference scheme at the stability limit. The right-hand side of the 
kinetic equation is just the mean value of the nearest-neighboring sites 
and the diffusion coefficient is the maximal value allowed by the stability 
condition. For the LBE model the diffusion coefficient is expressed in the 
units ,a t=  z /x=  1; the diffusion coefficient at the stability limit of the EFD 
reads 

1 ( / I x )  z 1 
K ~  

2D At  2D 

This scheme requires only two arrays in memory: the tracer concentrations 
at two time levels. 

3 . 3 .  T h e  G e n e r a l  C a s e  

In the general case one has to store M = 2D distributions in addition 
to the tracer concentrations at two time levels. What do we gain from this 

0.08 , v I 

: i ! 
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Fig. 1. I n t e g r a t i o n  o f  the  diffusion e q u a t i o n  in o n e  d i m e n s i o n  by  the  B G K - L B E  wi th  r = 0.3. 

T h e  in t eg ra t i on  s ta r t s  a t  t ime  t~=lS/~c(r wi th  init ial  va lues  T(x, ti)=[l/2(rc~ct~) 1/2] 
e x p ( - - x 2 / 4 h % )  ( d o t t e d  l ine)  a n d  ends  a t  tl= 75 / r ( to ) .  T h e  f igure s h o w s  the  n u m e r i c a l  resul ts  

( b r o k e n  line) t o g e t h e r  wi th  the  ana ly t i ca l  so lu t ion  (sol id line).  
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extra cost? In the range 0 < o9 < 1 (underre laxa t ion)  the diffusion coefficient 
is larger  than the value at the stabil i ty limit of  the E F D  scheme, while 

we still keep A t  = A x  = 1. In contras t  to E F D ,  the LBE model  is stable in 
this pa ramete r  range. 

3.4. Numer ica l  Exper iments  

To test the predict ions  of  the LBE model  out l ined above the one- 
d imensional  diffusion equat ion was integrated. As initial condit ions,  values 
of an analyt ical  solut ion were used, namely 

2(r~Kti) ~/'- exp --  

The integrat ion starts  at t ; =  15/x(o)) and  ends at  Q=75/K(O)); thus the 
time interval  depends  on x(o)), but  in each case the integrat ion starts with 
the same numerical  values and ends after the max imum decreases from 
~0.073 to ~0.033. Figure  1 shows the results of such an integrat ion for 
o )=0 .3  together  with the analyt ical  solut ion and the initial values. By 

i0 -~ ............................... i ................................ i ................................ 

............................... : ................................ i .............................. 

l O  : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :  

!!!!!!!!!!!!!!!!!2!!!!!!!:2!•!!!!•!2!}!!!!!?!!!!!!!!!!!!!!!2!!!!22•2!!5!!2!2!!}!!!2!!!!2!2!!!!!!! 

lo-Si . i i 
0 0.5 1 i. 

o) 

Fig. 2. Integration of the diffusion equation in one dimension by the BGK-LBE. The integration 
starts at time ti= 15/1r with initial values T(x. ti)= [ l/2(~xti) j~] exp(--x'-/4xtJ and ends 
at t/= 75/r(~). The plot shows the logarithm of the maximum error (max{ IT.u,~i:. ~ ~o,~io.- 
T~.~.~, ~ot~io. I } ) at the end of the integrations as a function of w. The error increases at 
small values of r (large values of the diffusion coefficients). 
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appropriate choice of co, one can keep zlt = 1 for "arbitrarily" large diffu- 
sion coefficients: the scheme is stable but the numerical error increases with 
increasing diffusion coefficient (compare Fig. 2). Thus, we have an explicit 
scheme (BGK-LBE) where the length of the time step is no longer limited 
by stability requirements. The large error at small values of co stems from 
the fact that explicit approximations of parabolic equations act like a 
hyperbolic system with two real finite-difference characteristics instead of 
only a single real characteristic of the continuous systemJ '~ 

4. S U M M A R Y  A N D  C O N C L U S I O N  

A very simple LBE for diffusion in an arbitrary number of dimensions 
is proposed. For co = 1 the resulting algorithm is identical to an explicit 
finite-difference scheme at its stability limit. Thus the LBE scheme is not 
only stable, but automatically picks the maximal allowed diffusion coef- 
ficient ~c to ensure stability of the EFD scheme. 

For LGA the transport coefficients depend on the collision rules, 
which are never optimal, in the sense that they yield only a certain 
approximation of the (continuous) local equilibrium functions (compare 
the various FHP models with and without rest particles in Frisch et al. ~9) 

or the various collision rules proposed for FCHC by H~non, ~~ Rem and 
Somers, ~191 and van Coevorden et  al.~23~), whereas for LBE, the collisions 
(which do not show up explicitly) can create local equilibrium at each time 
step. By reducing the number of collisions in LGA one gets models with 
higher diffusion coefficients while stability is assured. This can be regarded 
as a kind of underrelaxation. 

In the BGK-LBE model the diffusion coefficient ~-; is an adjustable 
parameter. Of special interest is the parameter range 0 < co < 1. The use of 
information contained in the nonequilibrium distribution functions allows 
explicit stable integration beyond the stability limit of the EFD scheme. 
Thus, the time step is limited by accuracy and not by stability 
requirements. 
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NOTE A D D E D  IN PROOF 

The LBE model can be generalized by introducing a tracer dependent 
iteration parameter co(T). An analogous multiscale analysis yields the diffu- 
sion equation 
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OT 
c~t V[K(T) VT] 

with a diffusion coefficient which depends on the concentration T 

[ '  
K(T) = co(T) D 
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